Part 1a: Extension-based and labelling semantics

Consider the argumentation graph $\mathcal{F} = (A,R)$ with $A = \{a,b,c,d,e\}$ and $R = \{ (b,a), (b,c), (c,b), (c,a), (a,d), (d,e)\}$.

Capture d’écran 2024-01-15 à 16.01.57.png

  1. Calculate stable, preferred, complete and grounded extensions.

    1. The set of preferred/stable semantics are $\{\{b,d\}, \{c,d\}\}$
    2. The complete extensions are $\{\{b,d\}, \{c,d\}, \emptyset\}$
    3. The grounded extension is $\emptyset$
  2. For each extension obtained, write the equivalent labelling $Lab$.

    Extension $\mathtt{in}(Lab)$ $\mathtt{out}(Lab)$ $\mathtt{undec}(Lab)$
    $\{b,d\}$ $\{b,d\}$ $\{c,a,e\}$ $\emptyset$
    $\{c,d\}$ $\{c,d\}$ $\{b,a,e\}$ $\emptyset$
    $\emptyset$ $\emptyset$ $\emptyset$ $\{a,b,c,d,e\}$

Part 1b: Extension-based and labelling semantics

Consider the argumentation graph below.

Capture d’écran 2024-01-15 à 17.00.28.png

  1. Calculate grounded, stable, preferred, semi-stable, complete and ideal extensions.
    1. The preferred/semi-stable extensions are $\{\{b\}, \{a\}\}$
    2. There are no stable extensions.
    3. The ideal/grounded extensions are $\emptyset$
    4. The complete extensions are $\{\emptyset, \{a\},\{b\} \}$
  2. For each extension obtained, write the equivalent labelling $Lab$.
Extension $\mathtt{in}(Lab)$ $\mathtt{out}(Lab)$ $\mathtt{undec}(Lab)$
$\{b\}$ $\{b\}$ $\{a,c\}$ $\{d,e,f,g\}$
$\{a\}$ $\{a\}$ $\{b,c\}$ $\{d,e,f,g\}$
$\emptyset$ $\emptyset$ $\emptyset$ $\{a,b,c,d,e,f,g\}$

Part 2: Proof dialogues

Consider the argumentation graph below.