Consider the argumentation graph $\mathcal{F} = (A,R)$ with $A = \{a,b,c,d,e\}$ and $R = \{ (b,a), (b,c), (c,b), (c,a), (a,d), (d,e)\}$.
Calculate stable, preferred, complete and grounded extensions.
For each extension obtained, write the equivalent labelling $Lab$.
Extension | $\mathtt{in}(Lab)$ | $\mathtt{out}(Lab)$ | $\mathtt{undec}(Lab)$ |
---|---|---|---|
$\{b,d\}$ | $\{b,d\}$ | $\{c,a,e\}$ | $\emptyset$ |
$\{c,d\}$ | $\{c,d\}$ | $\{b,a,e\}$ | $\emptyset$ |
$\emptyset$ | $\emptyset$ | $\emptyset$ | $\{a,b,c,d,e\}$ |
Consider the argumentation graph below.
Extension | $\mathtt{in}(Lab)$ | $\mathtt{out}(Lab)$ | $\mathtt{undec}(Lab)$ |
---|---|---|---|
$\{b\}$ | $\{b\}$ | $\{a,c\}$ | $\{d,e,f,g\}$ |
$\{a\}$ | $\{a\}$ | $\{b,c\}$ | $\{d,e,f,g\}$ |
$\emptyset$ | $\emptyset$ | $\emptyset$ | $\{a,b,c,d,e,f,g\}$ |
Consider the argumentation graph below.