Consider the argumentation graph $\mathcal{F} = (A,R)$ with $A = \{a,b,c,d,e\}$ and $R = \{ (b,a), (b,c), (c,b), (c,a), (a,d), (d,e)\}$.

Calculate stable, preferred, complete and grounded extensions.
For each extension obtained, write the equivalent labelling $Lab$.
| Extension | $\mathtt{in}(Lab)$ | $\mathtt{out}(Lab)$ | $\mathtt{undec}(Lab)$ |
|---|---|---|---|
| $\{b,d\}$ | $\{b,d\}$ | $\{c,a,e\}$ | $\emptyset$ |
| $\{c,d\}$ | $\{c,d\}$ | $\{b,a,e\}$ | $\emptyset$ |
| $\emptyset$ | $\emptyset$ | $\emptyset$ | $\{a,b,c,d,e\}$ |
Consider the argumentation graph below.

| Extension | $\mathtt{in}(Lab)$ | $\mathtt{out}(Lab)$ | $\mathtt{undec}(Lab)$ |
|---|---|---|---|
| $\{b\}$ | $\{b\}$ | $\{a,c\}$ | $\{d,e,f,g\}$ |
| $\{a\}$ | $\{a\}$ | $\{b,c\}$ | $\{d,e,f,g\}$ |
| $\emptyset$ | $\emptyset$ | $\emptyset$ | $\{a,b,c,d,e,f,g\}$ |
Consider the argumentation graph below.