Let us consider the following ranking-based semantics. Let $\mathcal{F}= (A,R)$ be an AF:
For the graph below, compute the acceptability degrees of all arguments. Then, rank the arguments from the most acceptable to the less.
Consider the AF $\mathcal{F}=(A,R)$ with $A = \{a,p\}$ and $R= \{(p,a)\}$.
H-categoriser/Max-based
$p>a$
Card-based
$p>a$
Consider the AF $\mathcal{F}=(A,R)$ with $A = \{q,r,s,b\}$ and $R= \{(q,b),(r,b),(s,b)\}$.
H-categoriser
$q,s,r, > b$
Max-based
$q,s,r, > b$
Card-based
$q,s,r, > b$
Consider the AF $\mathcal{F}=(A,R)$ with $A = \{p,q,a,b\}$ and $R= \{(p,q), (q,a)\}$.
H-categoriser/Max-based
$b,p > a > q$
Card-based
$b,p > a > q$
Consider the AF $\mathcal{F}=(A,R)$ with $A = \{t,p,q,a\}$ and $R= \{(t,q), (t,p), (p,a), (q,a)\}$.
H-categoriser
$t > p,q,a$
Max-based semantics
$t > a>p,q$
Card-based
$t > p,q > a$
Consider the AF $\mathcal{F}=(A,R)$ with $A = \{v,x,y,z,r,s,b\}$ and $R= \{(v,r),(x,r),(x,s), (y,s), (z,s), (r,b), (s,b)\}$.
H-categoriser
$v,y,x,z > b > r > s$
Max-based
$v,y,x,z > b > r , s$
Card-based
$v,y,x,z > b > r > s$
Consider the AF $\mathcal{F}=(A,R)$ with $A = \{a_1, a_2, \dots, a_{10}\}$ and $R= \{(a_{10},a_9), (a_9, a_{10}), (a_9, a_8), (a_8, a_7), (a_8, a_4), (a_6, a_5), (a_5, a_4), (a_2, a_1), (a_1, a_2), (a_2, a_3), (a_1,a_3), (a_3, a_4)\}$
H-categoriser
$a_6 > a_1, a_2, a_{10}, a_9, a_8, a_7 > a_5 > a_3 > a_4$
Max-based
$a_6 > a_1, a_2, a_{10}, a_9, a_8, a_7 , a_3 , a_4>a_5$
Card-based
$a_6 > a_1, a_2, a_{10}, a_9, a_8, a_7 > a_5 > a_3 > a_4$
Let us consider the following situations. In each of them, identify whether or not there are logical fallacies, and if yes, which ones?