Let us consider the following ranking-based semantics. Let $\mathcal{F}= (A,R)$ be an AF:
For the graph below, compute the acceptability degrees of all arguments. Then, rank the arguments from the most acceptable to the less.
AF $\mathcal{F}=(A,R)$ with $A = \{a,p\}$ and $R= \{(p,a)\}$.
AF $\mathcal{F}=(A,R)$ with $A = \{q,r,s,b\}$ and $R= \{(q,b),(r,b),(s,b)\}$.
AF $\mathcal{F}=(A,R)$ with $A = \{p,q,a,b\}$ and $R= \{(p,q), (q,a)\}$.
AF $\mathcal{F}=(A,R)$ with $A = \{t,p,q,a\}$ and $R= \{(t,q), (t,p), (p,a), (q,a)\}$.
AF $\mathcal{F}=(A,R)$ with $A = \{v,x,y,z,r,s,b\}$ and $R= \{(v,r),(x,r),(x,s), (y,s), (z,s), (r,b), (s,b)\}$.
AF $\mathcal{F}=(A,R)$ with $A = \{a_1, a_2, \dots, a_{10}\}$ and $R= \{(a_{10},a_9), (a_9, a_{10}), (a_9, a_8), (a_8, a_7), (a_8, a_4), (a_6, a_5), (a_5, a_4), (a_2, a_1), (a_1, a_2), (a_2, a_3), (a_1,a_3), (a_3, a_4)\}$
Let us consider the following situations. In each of them, identify whether or not there are logical fallacies, and if yes, which ones?